Shedding of foodborne pathogens by Caenorhabditis elegans in compost-amended and unamended soil.
نویسندگان
چکیده
A study was done to characterize the shedding of foodborne pathogenic bacteria by Caenorhabditis elegans, evaluate the persistence of worm populations cocultured with foodborne pathogens, and determine if C. elegans disperses ingested pathogens in soil as a result of shedding. Escherichia. coli O157:H7, Salmonella enterica serotype Poona, and Listeria monocytogenes, as well as E. coli OP50, a non-pathogenic strain, were studied. Synchronous populations of C. elegans were fed for 24 h on confluent lawns of nalidixic acid-adapted bacteria. C. elegans shed viable cells of ingested bacteria on tryptic soy agar supplemented with nalidixic acid (50 microg ml(-1)) (TSAN) throughout a 5-h post-feeding period. C. elegans persisted for up to 10 days by feeding on bacteria that had been shed and grew on TSAN. Eggs harvested from C. elegans cultured on shed foodborne pathogens had the same level of viability as those collected from C. elegans grown on shed E. coli OP50. After 6-7 days, 78%, 64%, 64%, and 76% of eggs laid by C. elegans that had fed on E. coli O157:H7, S. Poona, L. monocytogenes, and E. coli OP50, respectively, were viable. Worms fed on E. coli O157:H7 were inoculated into soil and soil amended with turkey manure compost. Populations of C. elegans persisted in compost-amended soil for at least 7 days but declined in unamended soil. E. coli O157:H7 was detected at 4 and 6 days post inoculation in compost-amended and unamended soil, and in unamended soil inoculated with E. coli OP50. Populations of E. coli O157:H7 in soil amended with turkey manure compost were significantly(alpha = 0.05) higher than those in unamended soil. Results indicate that C. elegans can act as a vector to disperse foodborne pathogens in soil, potentially resulting in increased risk of contaminating the surface of pre-harvest fruits and vegetables.
منابع مشابه
Microcosm enrichment of 1,3-dichloropropene-degrading soil microbial communities in a compost-amended soil.
AIMS A microcosm-enrichment approach was used to investigate bacterial populations that may represent 1,3-dichloropropene (1,3-D)-degrading micro-organisms in compost-amended soil. METHODS AND RESULTS After 8 weeks of incubation, with repeated application of 1,3-D, volatilization fluxes were much lower for compost-amended soil (CM) than with the unamended soils, indicating accelerated degrada...
متن کاملMigration of Caenorhabditis elegans to manure and manure compost and potential for transport of Salmonella newport to fruits and vegetables.
A study was done to determine if a free-living, bacterivorous nematode, Caenorhabditis elegans, migrates to bovine manure, turkey manure, composted bovine manure, composted turkey manure, and manure-amended soil inoculated with Salmonella Newport. Movement of the worm to lettuce, strawberries, and carrots was also studied. C. elegans moved most rapidly to turkey manure and strawberries, with 35...
متن کاملOrganic Amendment Effects on Soil Carbon and Microbial Biomass in the Root Zone of Three Landscape Tree Species
There is increasing interest in amending degraded soils with organic matter to improve soil quality, especially in urban areas where rehabilitation of damaged soils may enhance tree growth and provision of ecosystem services. To assess the potential of such organic amendments for producing a sustained alteration in soil biological characteristics, researchers studied the effects of three organi...
متن کاملInfluence of Herbicide Triasulfuron on Soil Microbial Community in an Unamended Soil and a Soil Amended with Organic Residues
The effect of organic amendments and pesticides on a soil microbial community has garnered considerable interest due to the involvement of microorganisms in numerous soil conservation and maintenance reactions. The aim of this work was to assess the influence on a soil microbial community of the simultaneous application of the herbicide triasulfuron at three doses (2, 10, and 50 mg kg-1), with ...
متن کاملPhytostabilisation of copper-contaminated soil in Katanga: an experiment with three native grasses and two amendments.
This study evaluates the feasibility of using the grass species Rendlia altera, Monocymbium ceresiiforme, Cynodon dactylon, and amendments (compost and lime) for the phytostabilisation of soils contaminated by Cu in the province of Katanga (Democratic Republic of Congo). Species were grown on control and Cu-contaminated plots (artificially contaminated with 2,500 mg kg(-1) Cu) unamended (NA), a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Food microbiology
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2006